

Worcester Polytechnic Institute

RBE4815–Final Project Report
Dembski, Clayton John

Rangel, Steven
van Rossum, Floris

White, Adam

supervised by:
Professor: Zhi Li

Executive Summary

Table of Contents
Executive Summary 2

Table of Contents 2

Introduction 3

Goal Statement 3

Task Specifications 3

Workspace Setup 3
Keyboard 4
Electrical Circuit 4

Gripper Design 5

Programming 5
Movement 5
Timing 5

Results and Discussion 5

Conclusions 5

Bibliography 6

Appendices 6

Introduction
The RBE4815: Industrial Robotics class final project is intended as a capstone for the

entire class. Team 3 successfully created a challenge and completed it. The IRB1600 ABB
Robotic Arm was used to play songs such as “Fur Elise” and “Mary Had a Little Lamb” on a
Casio Electronic Keyboard. Many problems and obstacles, such as timing and configuration
errors, were encountered along the way and solutions to those problems were found. The team
became more knowledgeable about industrial robotics concepts such as forward and inverse
kinematics, singularities and RAPID code. All of these subject can be utilized and applied in the
future as they are now more familiar.

Goal Statement
The goal of this project is to utilize the ABB IRB1600 robotic arm to play musical notes in

the form of a song on a Casio SA-76 keyboard autonomously and with ease. Additionally, to
allow for easy programming of songs in a modular and efficient manner.

Task Specifications
Playing musical pieces can be difficult, even for a person. Music revolves around proper

timing and speed. Therefore the task specifications for this project revolve around these topics.
The target was to get the robot to play a song as fast as possible. This meant that we had to put
the robot into maximum speed and plan our timing accordingly. The goal for our robot was to
play a song at about 80 beats per minute (BPM). Although this would sound slow, it would still
make a song recognizable. Additionally we wanted to make the song sound as pleasant as
possible, this meant reducing things that make additional noise. We also wanted to make
programming the songs as easy as possible. Hardcoding different songs was an option, but that
would take a significant amount of time if a new song needed to be played. When programming
a new song the user should be able to call some method that simplifies the process.

Workspace Setup
The following paragraph discusses the different elements of our mechanical and

electrical setup in order to complete this project. The electronic keyboard was positioned flat on
the workspace table within comfortable reach of the ABB robot arm. No jig was used to hold the
keyboard in place, but a simple manual calibration sequence was used to determine whether
the keyboard was positioned correctly. A variable, current-limiting power supply was used
behind the arm and keyboard to supply 12V DC limited to 2.5A to the solenoid. A relay that
could support the 24V signal from the robot’s control circuitry was mounted onto the arm and
wired to the solenoid and power supply. As shown in figure 1, the solenoid was directly mounted

perpendicular to the robot’s end effector and a rubber finger was fabricated and attached to the
plunger of the solenoid.

Figure 1: Final Setup of Workspace

Keyboard
The keyboard used for this project was a Casio SA-76 keyboard. It features 44 different

keys and about 100 different tones. Because we were afraid of the possibility of the keyboard
breaking due to an accident with the robot we chose this cheap keyboard, it was only around 50
dollars. The keyboard was placed in the robot workspace flat and facing the robot. The
configuration of the robot when directly over the keyboard was (1,-2,-1,0). This configuration
allowed us to encounter no singularities when moving from one end of the keyboard to the
other, other configurations did cause problems.

Electrical Circuit
The electrical circuit that had to be created in order to get this project to completion was

the biggest set-up challenge. The IRB1600 robot digital out ports that were usable were
D652_10_DO1 and D652_10_DO2. These could be toggled by a RAPID program or the user

via the Flex Pendant buttons. However, these digital out ports emitted a signal of 24V and about
0.5A. Our solenoid required 12V and about 2.5A to use. This meant that even if we transformed
the voltage from 24V to 12V, we would likely not have enough power to actuate the solenoid. A
plausible solution to this problem is to create a seperate circuit to power the solenoid, with a
seperate power supply, but actuated by the IRB1600 controller digital out. Initially, we ordered a
12V, 3A power supply from Amazon. However, this item was incorrectly listed and was only able
to supply 3 amperes for short peaks 3 seconds apart. Using this power supply was not an option
as we had to press keys at least once every second in order to reach 80 BPM. Therefore, we
utilized a 12V DC power supply to deliver power to the solenoid if toggled. We set the current
limit to 2.5A as this created a sufficiently strong enough push to press down a key on the
keyboard, but not break it. The solenoid we were using was rated for a maximum force of 55N.
We also purchased a relay from amazon. The relay had a switching voltage of 24V and a
maximum current of 5A, so this was adequate for our project. As you can see in the diagram
below, the robot controller digital out toggled the relay and connected the power supply to the
solenoid causing it to actuate.

Figure 2: Electrical Diagram of the Project Setup

Gripper Design
Designing and manufacturing the gripper was by far the most challenging mechanical

aspect of this project. We had to properly design it to withstand the load of the solenoid and
avoid breaking the keyboard. We decided that we wanted to add a solenoid on to the end
effector because we assumed this would allow us to press keys faster. This actuation would

allow us to press a key on the keyboard without having to move all the joints on the keyboard.
This would save us time as we now had to only actuate the solenoid in order to actuate a key.
An image of the end effector is included below.

Figure 3: The final end effector

We consider the solenoid part of the end effector as it is attached onto the end of the robot. The
solenoid runs at 12V and ~2.5 A. The maximum force it can produce is around 55N. However,
because we scaled down the current this was much less. Still, the force was significant enough
to probably break the keyboard. Therefore we installed multiple different dampers in the system.
We had padding and a spring around the top of the solenoid. This can be seen as the white
foam on the top. This white packaging protection mainly served as noise reduction as the
solenoid made a significant amount of noise when actuated. The spring served to retract the
solenoid once it had been actuated. The bouncy ball on the end of the solenoid acted
dampened the force on the keyboard. The bouncy ball had to be extremely skinny as it had to
press between two keys. Because we didn’t want to change our z height between key presses,
as it would cost more time, we pressed significantly harder on the black keys as compared to
the white keys. The bouncy ball had to accommodate for this by compressing more for black
keys than white keys.

Programming

Simulation
The start of the programming in RobotStudio with RAPID code was done with the

simulation software. We assumed that we would depend significantly more on the simulation
side of RobotStudio than we actually did. CAD models of the end effector and keyboard were
made and introduced into RobotStudio. We made targets for the high and low keys on the
keyboard using the offset of the end effector tool derived from the STL of the end effector
solenoid. This worked relatively well until we found the need to add the bouncy ball and
dampening to our end effector. This changed the depressed and nondepressed offset of our
end effector. Because redoing the CAD model would have taken to long, we manually jogged
the robot into the appropriate position and found the new required z offset for the end effector.
We implemented this change in the code. We took on this approach as well for determining the
algorithm and hardcoded offsets for the movement. It was just way more accurate and easier to
do for our application as compared to simulation. Simulation did prove extremely useful in order
to start the project and understand how long it would take for the robot to go from the high key
to the low key. Additionally it provided a simple catch of stupid coding mistakes such as syntax
or offset errors. The simulation software also caught many of the singularity errors we ran into
early on in the project. By manually jogging the robot to a position we were able to avoid these
singularities by finding a working configuration. This working configuration was then input into
the RAPID code.

Movement
The movement of the arm was controlled by the command GoToKey(keynum), where

the valid keys were numbers from 1 to 44 (starting from F) and -1. If the number was -1, the arm
would remain in the current position for a single beat and “Hold” the current note. Else, the arm
would lift off the key, move to the next key, and, on the beat, press onto the given key. Each
key’s position was attempted first to be found algorithmically, but was ultimately found through
hard code. The following is the direct code for the algorithm.

As the key values should ideally repeat every 12 values, if the key is from 0 to 6, offset the key
by the distance from one black key to one white key. If 7, offset by the net distance from 0 to 6,
and 2 times the distance from a black key to a white key. And so on. This code ultimately failed
due to imprecision in the keyboard. On black keys that were grouped in 3’s, the first black key
was left justified, the middle key was centered, and the right key was right justified. In groups of
two, the first was left justified and the second was right justified. This meant that almost half of
the keys in each span of 12 would need non uniform values to perform correctly. Finding these
unique measurements would have taken the same time, if not longer, than hard coding the
position of each key, and hard coding insured the position would be correct each time. Because
of this, we decided to jog the robot to each position and collect the values for the position.

Timing
One of the most important factors for a Piano playing robot is playing in time with the

current chosen song. The problem with this is that the time the arm takes to move from key to
key is dynamic: the arm could take only .1 seconds to move to a location adjacent to the current
one, and .5 seconds to move up an octave. To solve this, we decided to set up an interrupt trap
routine that would perform during the move-key phase of the GoToKey function. The trap
routine was set to be as computationally small as possible, so that multiple interrupts would not
trigger at once. In short, at the start of go to key, a counter would be reset to 0. Every .1
seconds, the counter would be increased by 1. In this way, the time the arm took to move could
be found by using the formula counter *.1. Knowing this, the time till the next beat could be

calculated by the following formula: WaitTime = TimePerBeat-ArmTravelTime, or, in our
instance WaitTime(.5-counter*.1).

Discussion & Results:
By the end of our final lab session, we were successfully able to play Fur Elise and Mary

Had A Little Lamb at 76 beats per minute. The system was open ended enough that one could
convert a song to perform by treating 1 as the F key one octave below middle c and creating a
list of numbers to iterate through.

The end effector acted as expected. We had to pay significant attention to the wait
statements and timers in order to ensure that the solenoid was actuated at the appropriate time.
If the wait time was too short, the solenoid would be depressed before the arm stopped moving.
This could cause damage to the keyboard as it dragged across it. If this happened it also
caused the keyboard to be dragged which meant that we had to readjust and realign it with the
high and low joint moves. The keyboard was in a significant amount of danger while we were
testing the code. We tried to remove the keyboard from the workspace whenever we tested
code for the first time, but, still, we managed to break the keyboard. It was not, however, when
we were testing the code but rather when manually jogging the robot. Although the torque limit
engaged and the robot froze, it was too late. An electronic panel in the robot had already
snapped and the higher keys on the keyboard were no longer functional. This didn’t prevent us
from completing the project as this failure only affected the highest 8 notes. This was the reason
that such as cheap keyboard was used, the possibility of this happening was realized by us.

We expected the the limiting factor for the project to be the direct speed of the arm, instead of
the solenoid. The arm itself could move to press keys for a tempo of about 85 BPM. This was
what we expected our cap to be, as the robot will not move faster than 100% speed. The
solenoid, however, caused problems due to the strength of the spring used to press the keys.
When the power to the solenoid was cut, the end effector would take up to .3 seconds to lift
back up, and when powered would take roughly .1 seconds to fire. If we were to move the arm
before these timings were met, we would end up hitting multiple keys, shifting and misaligning
the keyboard, or, in the worst case, breaking the keyboard further.

The electronic circuit performed as expected. After the failed attempt with the Amazon
power supply as listed in the section above, the laboratory power supply worked. In order to
obtain the specifications of the electrical properties of the digital out port on the robot we
performed research online. Still, we were unable to find the voltage of the ports. So, we
connected a multimeter across the terminal and found out that the voltage was 12V. Whenever
the solenoid of the default gripper used in previous labs was actuated it read a current of 0.5A.
With this knowledge we were able to order the appropriate switch for our circuit. We first
searched digikey for some kind of transistor, but we found that it was difficult to find a 24V
transistor. So we opted for a relay instead. The relay we found was rated for 5A at 24V, so we

assumed it would work for our application. The relay we ordered worked fine when wired up to
the robot.

Figure 4: Relay used in our electrical circuit

Conclusions:
By the end of this project, we learned an effective and efficient way to program an

industrial robot arm to play a musical keyboard. Using a solenoid to press the keys meant we
simplified the arm’s required motion to just one dimension, and hard-coding the targets allowed
us to better compensate for varying offsets between keys. There are a number of things we
could have done differently, including making a custom mount for the solenoid, would would
have allowed us to mount it parallel to the end of the arm, rather than perpendicular. Possible
improvements range from making a fixture to support multiple solenoids or using multiple robot
arms to support polyphonic playing, or implementing MIDI uploading/streaming for avoid the
need to hard-code transcribed sheet music. The most notable parameter of the robot’s playback
that could use improvement is simply its speed. To perform at human-like speeds, the robot
would need to move multiple times faster than we were safely able to achieve during this
project. In order to achieve this with the hardware we used, significant improvements would
need to be made to the code to insure that higher-speed solenoid actuation could take place
safely without unwanted collisions. Overall, the team has learned a great deal about using
industrial robot arms in delicate applications.

Contributions:

van Rossum, Floris Robot Studio, Demo Setup

Dembski, Clayton John RAPID code, Demo Setup

Rangel, Steven Hardware, CAD

White, Adam

Hardware, Electrical

Appendix A: Code:
MODULE Module1

 CONST jointtarget

High:=[[-87.6,76.6,-15.7,23.3,-63.6,173.4],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST jointtarget

Low:=[[-112.2,80.9,-29,-4.8,-52.6,187.4],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

CONST robtarget

Target_10:=[[244.89,-1043.63,202.7],[0.000177171,-0.360322418,0.93282749,-0.000773518]

,[-1,0,-2,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

CONST robtarget

Target_20:=[[233.31,-1043.63,202.7],[0.000177171,-0.360322418,0.93282749,-0.000773518]

,[-1,0,-2,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

!***

!

! Module: Module1

!

! Description:

! <Insert description here>

!

! Author: cjdembski

!

! Version: 1.0

!

!***

!***

!

! Procedure main

!

! This is the entry point of your program

!

!***

VAR intnum timeint;

VAR intnum timecount;

PROC main()

 timecount := 0;

 CONNECT timeint WITH incCount;

 ITimer 0.1, timeint;

 GoToKey(36);

 GoToKey(35);

 GoToKey(36);

 GoToKey(35);

 GoToKey(36);

 GoToKey(31);

 GoToKey(34);

 GoToKey(32);

 GoToKey(29);

 GoToKey(-1);

 GoToKey(-1);

 GoToKey(20);

 GoToKey(24);

 GoToKey(29);

 GoToKey(31);

 GoToKey(-1);

 GoToKey(-1);

 GoToKey(24);

 GoToKey(28);

 GoToKey(31);

 GoToKey(32);

 GoToKey(-1);

 GoToKey(-1);

 GoToKey(24);

 GoToKey(36);

 GoToKey(35);

 GoToKey(36);

 GoToKey(35);

 GoToKey(36);

 GoToKey(31);

 GoToKey(34);

 GoToKey(32);

 GoToKey(29);

 GoToKey(-1);

 GoToKey(-1);

 GoToKey(20);

 GoToKey(24);

 GoToKey(29);

 GoToKey(31);

 GoToKey(-1);

 GoToKey(-1);

 GoToKey(22);

 GoToKey(32);

 GoToKey(31);

 GoToKey(29);

 Retract;

ENDPROC

 PROC Path_10()

 MoveAbsJ Low, v500, fine, tool0\WObj:=wobj0;

 MoveAbsJ High, v500, fine, tool0\WObj:=wobj0;

 ENDPROC

PROC GoToKey(num keyNum)

 timecount := 0;

 !SetDO D652_10_DO1, 1;

 !Some delicious RAPID code that may or may not do things of important nature to

do with the robotics

 ! Do some calculations to determine the location of the position

 ! X: Variable

 ! Y: -1183.2 mm

 ! Z: 125.1 mm

 ! Retract the pusher

 ! Wait a bit

 IF keyNum = -1 THEN

 WaitTime(0.5 - timecount * 0.1);

 ELSE

 Retract;

 IF keyNum = 1 THEN

 MoveL

[[26.79,-1183.27,140.6],[0.55992,0.389101,-0.585975,0.437862],[-1,0,1,1],[9E+09,9E+09,

9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 2 THEN

 MoveL

[[14.85,-1183.27,140.6],[0.559918,0.389098,-0.585979,0.437863],[-1,0,1,1],[9E+09,9E+09

,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 3 THEN

 MoveL

[[5.31,-1183.27,140.6],[0.559924,0.389092,-0.58598,0.437858],[-1,0,1,1],[9E+09,9E+09,9

E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 4 THEN

 MoveL

[[-8.21,-1183.27,140.6],[0.559916,0.389099,-0.585978,0.437865],[-1,0,1,1],[9E+09,9E+09

,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 5 THEN

 MoveL

[[-18.97,-1183.27,140.6],[0.559917,0.389102,-0.585977,0.437861],[-1,0,1,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 6 THEN

 MoveL

[[-30.26,-1183.27,140.6],[0.559916,0.3891,-0.585977,0.437865],[-2,0,1,1],[9E+09,9E+09,

9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 7 THEN

 MoveL

[[-40.11,-1183.27,140.6],[0.559916,0.389103,-0.585977,0.437862],[-2,0,1,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 8 THEN

 MoveL

[[-54.40,-1183.26,140.6],[0.559916,0.389104,-0.58598,0.437859],[-2,0,1,1],[9E+09,9E+09

,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 9 THEN

 MoveL

[[-67.37,-1183.26,140.6],[0.559916,0.389097,-0.585984,0.437859],[-2,0,1,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 10 THEN

 MoveL

[[-77.56,-1183.27,140.6],[0.559923,0.389094,-0.585981,0.437857],[-2,0,1,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 11 THEN

 MoveL

[[-88.65,-1183.27,140.6],[0.559917,0.389103,-0.585978,0.43786],[-2,0,1,1],[9E+09,9E+09

,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 12 THEN

 MoveL

[[-98.67,-1183.26,140.6],[0.559919,0.389099,-0.585983,0.437854],[-2,0,1,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 13 THEN

 MoveL

[[-114.10,-1183.26,140.6],[0.559921,0.389099,-0.585979,0.437857],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 14 THEN

 MoveL

[[-125.81,-1183.27,140.6],[0.559917,0.389097,-0.585981,0.437861],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 15 THEN

 MoveL

[[-135.83,-1183.27,140.6],[0.559921,0.389104,-0.585969,0.437867],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 16 THEN

 MoveL

[[-147.13,-1183.27,140.6],[0.559918,0.389099,-0.585973,0.437869],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 17 THEN

 MoveL

[[-158.12,-1183.26,140.6],[0.559918,0.389099,-0.58598,0.437859],[-2,0,1,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 18 THEN

 MoveL

[[-169.81,-1183.26,140.6],[0.559918,0.389103,-0.585978,0.437859],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 19 THEN

 MoveL

[[-179.66,-1183.27,140.6],[0.559919,0.389102,-0.585973,0.437866],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 20 THEN

 MoveL

[[-194.37,-1183.26,140.6],[0.559918,0.389095,-0.585984,0.437857],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 21 THEN

 MoveL

[[-206.24,-1183.27,140.6],[0.559918,0.389101,-0.585977,0.437863],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 22 THEN

 MoveL

[[-217.46,-1183.27,140.6],[0.559919,0.389103,-0.585972,0.437866],[-2,0,1,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 23 THEN

 MoveL

[[-229.47,-1183.26,140.6],[0.55992,0.389097,-0.58598,0.437858],[-2,0,1,1],[9E+09,9E+09

,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 24 THEN

 MoveL

[[-240.77,-1183.27,140.6],[0.559922,0.389096,-0.585979,0.437859],[-2,0,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 25 THEN

 MoveL

[[-254.82,-1183.27,140.6],[0.55992,0.389094,-0.58598,0.437862],[-2,0,2,1],[9E+09,9E+09

,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 26 THEN

 MoveL

[[-265.42,-1183.27,140.6],[0.559921,0.389096,-0.585981,0.437857],[-2,0,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 27 THEN

 MoveL

[[-275.80,-1183.27,140.6],[0.559918,0.389101,-0.585978,0.437861],[-2,0,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 28 THEN

 MoveL

[[-287.09,-1183.27,140.6],[0.55992,0.3891,-0.585975,0.437864],[-2,0,2,1],[9E+09,9E+09,

9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 29 THEN

 MoveL

[[-298.55,-1183.26,140.6],[0.559921,0.389094,-0.585983,0.437856],[-2,0,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 30 THEN

 MoveL

[[-309.35,-1183.26,140.6],[0.559923,0.389097,-0.58598,0.437856],[-2,0,2,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 31 THEN

 MoveL

[[-321.31,-1183.27,140.6],[0.559919,0.389096,-0.585979,0.437863],[-2,0,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 32 THEN

 MoveL

[[-334.77,-1183.26,140.6],[0.559922,0.389094,-0.585981,0.437858],[-2,0,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 33 THEN

 MoveL

[[-345.67,-1183.26,140.6],[0.55992,0.389101,-0.585978,0.437858],[-2,0,2,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 34 THEN

 MoveL

[[-358.48,-1183.26,140.6],[0.55992,0.389096,-0.58598,0.43786],[-2,0,2,1],[9E+09,9E+09,

9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 35 THEN

 MoveL

[[-369.05,-1183.26,140.6],[0.559923,0.389091,-0.585981,0.43786],[-2,0,2,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 36 THEN

 MoveL

[[-379.23,-1183.26,140.6],[0.559922,0.38909,-0.585983,0.437858],[-2,0,2,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 37 THEN

 MoveL

[[-394.65,-1183.26,140.6],[0.55992,0.389099,-0.585978,0.43786],[-2,-1,2,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 38 THEN

 MoveL

[[-404.42,-1183.27,140.6],[0.559923,0.389099,-0.585976,0.437859],[-2,-1,2,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 39 THEN

 MoveL

[[-417.26,-1183.27,140.6],[0.559921,0.389097,-0.585975,0.437864],[-2,-1,2,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 40 THEN

 MoveL

[[-426.28,-1183.26,140.6],[0.559923,0.389094,-0.585981,0.437857],[-2,-1,2,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 41 THEN

 MoveL

[[-438.71,-1183.27,140.6],[0.559921,0.389092,-0.585981,0.43786],[-2,-1,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 42 THEN

 MoveL

[[-449.26,-1183.26,140.6],[0.559918,0.3891,-0.585978,0.437861],[-2,-1,2,1],[9E+09,9E+0

9,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 43 THEN

 MoveL

[[-460.44,-1183.26,140.6],[0.55992,0.389103,-0.585976,0.437859],[-2,-1,2,1],[9E+09,9E+

09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ELSEIF keyNum = 44 THEN

 MoveL

[[-478.25,-1183.26,140.6],[0.559921,0.389098,-0.585978,0.437861],[-2,-1,2,1],[9E+09,9E

+09,9E+09,9E+09,9E+09,9E+09]], v1000, z1, tool0;

 ENDIF

 ! Wait a bit

 WaitTime(0.5 - timecount * 0.1);

 Push;

 ENDIF

ENDPROC

PROC Path_20()

 MoveL Target_10,v1000,fine,tool0\WObj:=wobj0;

 MoveL Target_20,v1000,fine,tool0\WObj:=wobj0;

ENDPROC

PROC Retract()

 SetDO D652_10_DO1, 1;

 WaitTime 0.2;

ENDPROC

PROC Push()

 WaitTime 0.2;

 SetDO D652_10_DO1, 0;

 WaitTime 0.2;

ENDPROC

TRAP incCount

 timecount := timecount+1;

ENDTRAP

ENDMODULE

